Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cereb Blood Flow Metab ; 41(11): 3028-3038, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102912

RESUMEN

The accurate identification of irreversible infarction and salvageable tissue is important in planning the treatments for acute ischemic stroke (AIS) patients. Computed tomographic perfusion (CTP) can be used to evaluate the ischemic core and deficit, covering most of the territories of anterior circulation, but many community hospitals and primary stroke centers do not have the capability to perform CTP scan in emergency situation. This study aimed to identify AIS lesions from widely available non-contrast computed tomography (NCCT) and CT angiography (CTA) using deep learning. A total of 345AIS patients from our emergency department were included. A multi-scale 3D convolutional neural network (CNN) was used as the predictive model with inputs of NCCT, CTA, and CTA+ (8 s delay after CTA) images. An external cohort with 108 patients was included to further validate the generalization performance of the proposed model. Strong correlations with CTP-RAPID segmentations (r = 0.84 for core, r = 0.83 for deficit) were observed when NCCT, CTA, and CTA+ images were all used in the model. The diagnostic decisions according to DEFUSE3 showed high accuracy when using NCCT, CTA, and CTA+ (0.90±0.04), followed by the combination of NCCT and CTA (0.87±0.04), CTA-alone (0.76±0.06), and NCCT-alone (0.53±0.09).


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Aprendizaje Profundo/normas , Accidente Cerebrovascular Isquémico/terapia , Tomografía Computarizada por Rayos X/métodos , Anciano , Isquemia Encefálica/patología , Angiografía Cerebral/métodos , Circulación Cerebrovascular/fisiología , Aprendizaje Profundo/estadística & datos numéricos , Medicina de Emergencia/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Imagen de Perfusión/métodos , Valor Predictivo de las Pruebas , Estudios Retrospectivos
2.
Med Phys ; 45(12): 5515-5524, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30307624

RESUMEN

PURPOSE: To extend image reconstruction using image-space sampling function (IRIS) to address large-scale motion in multishot diffusion-weighted imaging (DWI). METHODS: A clustered IRIS (CIRIS) algorithm that would extend IRIS was proposed to correct for large-scale motion. For DWI, CIRIS initially groups the shots into clusters without intracluster large-scale motion and reconstructs each cluster by using IRIS. Then, CIRIS registers these cluster images and combines the registered images by using a weighted average to correct for voxel mismatch caused by intercluster large-scale motion. For diffusion tensor imaging (DTI), CIRIS further reduces the effect of motion on diffusion directions by treating motion-induced direction changes as additional diffusion directions. CIRIS also introduces the detection and rejection of motion-corrupted data to avoid corresponding image degradation. The proposed method was evaluated by simulation and in vivo diffusion datasets. RESULTS: Experiments demonstrated that CIRIS can reduce motion-induced blurring and artifacts in DWI and provide more accurate DTI estimations in the presence of large-scale motion, compared with IRIS. CONCLUSION: The proposed method presents a novel approach to correct for large-scale in-plane motion for multishot DWI and is expected to benefit the practical application of high-resolution diffusion imaging.


Asunto(s)
Artefactos , Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento , Algoritmos , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Voluntarios Sanos , Humanos
3.
Magn Reson Imaging ; 50: 134-140, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626517

RESUMEN

Image reconstruction using image-space sampling function (IRIS) corrects motion-induced inter-shot phase variations using phase maps from navigator-echo for multi-shot diffusion MRI. However, the bandwidth along the phase-encoding direction of navigator-echo is usually lower than that of image-echo, and thus their geometric distortions may be different. This geometric mismatch is corrected in IRIS by using the B0 map from an additional scan. In this paper, we present an enhanced IRIS (eIRIS) method that remove the requirement of B0 map. eIRIS treats shots as virtual coils, and then uses an eigen-analysis-based approach, which is insensitive to geometric mismatch, to estimates coil sensitivity maps containing the inter-shot phase variations. The final image is reconstructed under the framework of SENSE. Simulation, phantom, and cervical spine experiments were performed to evaluate the eIRIS method. The images generated by IRIS without B0 correction contain severe artifacts. eIRIS obtains results without noticeable artifacts and comparable to those of IRIS with B0 correction and GRAPPA with a compact kernel (GRAPPA-CK) method. eIRIS slightly outperforms GRAPPA-CK in the terms of normalized root-mean-square error and signal-to-noise ratio. eIRIS has the potential to obtain high-quality diffusion-weighted images and will benefit the research and clinical diagnosis of spinal cord.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Columna Vertebral/diagnóstico por imagen , Artefactos , Humanos , Movimiento (Física) , Fantasmas de Imagen , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...